Collaboration Challenge

3DbioNet announced the #CollaborationChallenge, its first call for funding in January 2019. This is to facilitate new collaborations between partners.

We received six applications and three of them will receive the award of upto £2000 upon completion of their project. The selection criteria for the award were the scientific excellence, the quality of the interdisciplinary collaboration and the fit with 3DbioNet’s remit. At least one of the applicants must have had attended 3DbioNet’s Launch Workshop in Liverpool (14-15 January 2019). Participation from industry partners and Early Career Researchers was encouraged.

The winners of the first collaboration challenge are:

  1. Dr. Ke Ning, senior lecturer in Translational Neuroscience at Sheffield Institute for Translational Neuroscience at Sheffield University. The group was also the winner of the Quasi Vivo millifluidic system from Kirkstall Ltd.

Project description: The project will be on the investigation of the neurons and glia interactions in organoid disease models of Parkinson’s disease (PD).  The collaborators will include Professor Jens Schwamborn at University of Luxembourg, and Professor Thomas Hartung, Johns Hopkins University, MD, USA. The expected outcome is that pathways involved in the neuron-glia crosstalk inside the hMOs would be identified as potential therapeutic targets for drug screening for PD.

2. Manohar Prasad Koduri , PhD student, University of Liverpool and NTHU, Taiwan, Dr Jude Curran (School of Engineering, University of Liverpool) , Dr James Henstock (Institute of Ageing and Chronic Disease, University of Liverpool), Professor John Hunt (Nottingham Trent University), – Professor Fan-Gang Tseng (Engineering and System science, NTHU, Taiwan). The group were also the winner of theBiogelx Discovery kit from Biogelx Ltd.

Project description: Tri-Functional Nano-Particle Biosensors for Real Time Monitoring of Physiological Conditions for 3 Dimensional Tissue Engineering Applications. Within this system, they propose to develop a novel 3D cell culture system, which will monitor and control the spatial resolution of selected cell types within a construct using a combination of hydrogels (Biogelx), Optical sensors and human stem cells. Nanoparticles can be used to tether fluorescent based oxygen, pH and glucose sensors onto one bead, and therefore providing spatially relevant information regarding the cell environment inside hydrogel. The hydrogel/cell/Nano particle spheres will be produced by an electrospray method (developed at NTHU) and culture conditions prevalent to the longevity of human cells will be optimized in vitro (Liverpool).

3. Dr. Adedamola Olayanju, an early career Post-doctoral scientist at Northwick Park Institute for Medical Research (NPIMR).

Project description: The use of PeptiGels as an alternative source of ECM in the development of GI organoids. M in the development of GI organoids will be investigated. GI crypts or single cells will be isolated from healthy porcine tissue and propagated on different versions of PeptiGels (Alpha 1-5) to see which version provides the optimal environment for the culture of these cells. Resulting organoids will be assessed by 3D morphology using microscopy and immunostaining techniques. In addition, a pilot study will be done to compare organoids grown on PeptiGels to those grown on conventional ECMs such as Matrigel. Resulting organoids will be phenotyped by PCR for selected markers. This will be a collaboration between the NPIMR and Manchester BIOGEL.


There will be more calls for this type of funding in the future. The next funding call will be for pump priming projects, to be launched on 6th June 2019 at the workshop in Sheffield. Click here to REGISTER for this workshop.

Call for articles: special issue on 3D microtissues

The 3DbioNet team is inviting you to contribute articles for a special issue on the interdisciplinary challenges associated with the development and adoption of 3D microtissues. The special issue will be published in the Royal Society journal Interface Focus (information for authors). Read more about the scope of the special issue below.

Conventional two-dimensional (2D) cell models are a poor representation of human tissue anatomy and physiology; this can result in pharmacological and toxicological responses to pharmaceutical agents which are not relevant to humans.  Increasing awareness of these issues has led to the development of 3D cell culture models of human tissues, but many of the routine research methods do not easily translate from 2D to 3D.  Exploitation of the new 3D models therefore requires the development and application of new technologies that can control cell growth conditions to better recapitulate the anatomy and physiology, enhance reproducibility, and enable the complexity of the cellular structures to be monitored as they develop. This special issue welcomes reports, research articles and reviews that define and address challenges associated with the development and adoption of 3D microtissues. The focus is interdisciplinary science for 3D microtissues, from the development of biomaterials and bioengineering processes for cell culture, to tools that can perturb and record thousands of individual cells and their biochemical responses, and advanced mathematical and computational models that will assist in the design and understanding of these systems.

Contact us to express your interest before Monday 4th of February 2019 (publication in this special issue is by invitation only).

Submission deadline: Monday 1st of July 2019.

One week to go before we launch

3DbioNet wishes you a happy New Year 2019.
2019 will be our first year of operation, starting in one week with the launch workshop in Liverpool (14-15/01/2019). Registrations are now closed. Whether you join us or not, we hope you contribute to the discussions via social media, including comments on this blog and posts on Twitter #3DbioNet.

Organoids: 2017 method of the year.

Nature Methods has selected Organoids as their method of the year 2017 for:

… their immense potential as tools to study human biology in health and disease.

You can find the collection of article here and the Editorial here.


Become a member of 3DbioNet

Whether you are in academia or industry, if you are interested to become a member of our network, please register your interest here.